
Looking for Errors:
A Declarative Formalism for Resource-Adaptive Language Checking

Andrew Bredenkamp, Berthold Crysmann, Mirela Petrea

Deutsches Forschungszentrum Künstliche Intelligenz (DFKI) GmbH
Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany

{andrewb,crysmann,mirela}@dfki.de

Abstract
The paper describes a phenomenon-based approach to grammar checking, which draws on the integration of different
shallow NLP technologies, including morphological and POS taggers, as well as probabilistic and rule-based partial parsers.
We present a declarative specification formalism for grammar checking and controlled language applications which greatly
facilitates the development of checking components.

1. Introduction

This paper describes work aimed at developing a
system for writing software components for grammar
and controlled language checking. As opposed to the
“error recovery” view of parsing, we adopt a phenom-
ena (i.e. error type) oriented approach to language
checking. The system is built on top of a range of
existing, more or less shallow, natural language pro-
cessing components, which are used to provide in-
formation (linguistic descriptions) as input to the er-
ror checking components. The error checking com-
ponents themselves are expressed using a declarative
rule formalism which has been developed to identify
phenomena in terms of (but strictly separate from)
these linguistic descriptions.

Section 2 gives a more detailed justification of our
approach to language checking. We then give a de-
tailed description of the formalism, a formal definition
of the rule system which has been implemented, and
a description of the procedural semantics given to the
rules. Finally, we outline our plans for the future de-
velopment of these technologies.

2. Phenomenon-based Language Checking

A central problem in the area of grammar check-
ing lies in the discrepancy between the low density
of grammatical errors and the high degree of process-
ing needed for reliable error localisation and correc-
tion. Thus, checking a text against a positively de-
fined grammar using standard parsing technology to
detect “ill-formed” input (Carbonell and Hayes, 1983;
Carbonell and Hayes, 1984; K. Jensen et al., 1983;
Thurmair, 1990) does not appear to represent an op-
timal strategy, for a variety of reasons: first, given
the scarce distribution of grammar errors in real-world
texts, most processing effort goes on the parsing of

perfectly well-formed sentences, resulting in an over-
all slow performance. Also, without an explicit error-
model, it will not be straightforward to track down the
offending input token(s) within an erroneous sentence.
Furthermore, failure during parsing cannot be reli-
ably identified with erroneous input, because it may
equally well be related to the coverage of the under-
lying grammar. Finally, the amount of processing re-
quired for the detection and/or correction of a partic-
ular error varies considerably according to the error
type involved and the linguistic context in which it
occurs. Thus, a more flexible and resource-adaptive
approach to the task would seem to be attractive.

We have therefore adopted a radically different ap-
proach which relies on the development of an em-
pirically derived error-model. On the basis of a de-
tailed error typology for German, as outlined in (Bre-
denkamp et al., 1999), we have found it useful to for-
mulate a phenomenon-based approach under which an
input text is systematically scanned for error candi-
dates using a minimal amount of initial processing.
This scanning is achieved by means of “triggers”, e.g.
token string patterns, POS tags, and morphological an-
notations. In order to confirm real errors and discard
“false alarms”, these drastically reduced sets of can-
didate sentences are further processed using succes-
sively elaborate technology (e.g. partial and/or full
parsing). Thus, after an initial recall-oriented parti-
tioning into error candidates and non-errors, subse-
quent processing levels will be concerned with nar-
rowing down the set of error candidates to the set of
real error, ensuring a sufficiently high level of preci-
sion. As a consequence, both the exact locality of an
error and its type will be known quite early on, allow-
ing subsequent processing to be well-focussed.

Rather than relying on a single integrated shallow-
processing formalism, e.g. KURD (Carl and Schmidt-

Wigger, 1998) or the Xerox finite state calculus (Kart-
tunen et al., 1996), the phenomenon-based architec-
ture we assume draws a rather strict separation be-
tween the linguistic annotations provided by underly-
ing NLP components and the checking components
proper. This strategy enables us to combine the
virtues of a wide range of existing shallow process-
ing components for the task of grammar checking.
Moreover, the use of complementary and competing
technologies (e.g. two-level morphological tagging
and probabilistic part-of-speech tagging) also per-
mits a cross-validation of underlying NLP compo-
nents which makes the linguistic annotation of the in-
put text highly reliable. In addition to reliability, the
integration of complementary technology guarantees
a robust system: if one of the backend NLP technolo-
gies does not come up with an appropriate analysis of
the input, this information can often be approximated
by some other component. Thus overall robustness
does not depend on the robustness of each individual
module.

Furthermore, the separation of error checking com-
ponents from the underlying NLP backend technology
in an open architecture ensures a high degree of scal-
ability. Currently, different existing shallow process-
ing components have been integrated, including a two-
level based morphological tagger (Petitpierre and Rus-
sell, 1995), a probabilistic HMM-based POS tagger
(Brants, 1996) and chunker (Skut and Brants, 1998),
as well as a rule-based topological parser (Braun,
1999) which is part of the SMES information extrac-
tion architecture (Neumann et al., 1997). These un-
derlying components can be activated on-demand, fol-
lowing the principle of resource-adaptivity: namely
we use only the minimum amount of processing nec-
essary to identify the particular error phenomenon in
question.

Although grammar checking currently builds on
information provided by shallow NLP components
only, the cascaded architecture facilitates a flexible,
resource-adaptive approach which will, in work now
started, take advantage of annotations provided by
deep NLP technology.

3. Specification of Language Checking
Components

The use of multiple backend NLP components in
the context of language checking necessitates the de-
velopment of a sufficiently flexible and general spec-
ification language which allows the error checking
components to access multi-dimensional annotations
in a uniform fashion.

A major design goal in the development of the

specification language was to ensure that the represen-
tation formalism be as declarative as possible, thereby
supporting a division of labour between the linguistic
task of developing error checking heuristics and en-
gineering aspects, such that individual error checking
modules can benefit from global optimisations.

As a second major property, the specification lan-
guage should, of course, support the basic architec-
ture assumed in the project, namely the fundamental
distinction drawn between initial recall-oriented de-
tection of error candidates and successive validation
on the basis of more sophisticated information.

Third, although the straightforward procedural in-
terpretation of the basic formalism should be as ef-
ficient as possible, the specification language should
still provide means to include more complex con-
straints expressed in terms of “richer” descriptions.

3.1. An error description language

The error description formalism we developed per-
mits the specification of error phenomena in terms of
regular expressions over complex linguistic objects,
represented as feature structures. These feature struc-
tures denote the linguistic annotations provided by dif-
ferent underlying NLP components, such as POS and
morphological taggers. The basic regular language
has been augmented with a set of relational constraints
which allow for the bottom-up integration of (partial)
parsing.

Each error description consists of essentially two
parts: a declaration of (local) types, and a set of FSAs
over the objects so defined (see Figure 1). Rules are
classified into trigger rules, which serve to identify
an initial set of error candidates, and evidence rules
which may confirm a candidate as an error or discard
a potential “false alarm”.

3.1.1. Type definitions
Error descriptions in the FLAG system mainly con-

sist of type definitions for (word-level) linguistic ob-
jects and finite state automata which are stated over
the objects so defined. Linguistic objects are defined
along various dimensions, including a word's shape,
its part-of-speech tag, and morphological information.
These dimensions correspond directly to the linguis-
tic annotations provided by the NLP backend compo-
nents, which are represented in the system as feature
structures. Which values a particular feature may as-
sume is thus entirely determined by the corresponding
backend technology.

Definition of linguistic types are (partial) descrip-
tions of these feature structures. To warrant a certain
degree of generality and compactness of description,

#ERROR mWn
#OBJS

@meines ::= [TOK "^[Mm]eines$"];
@wissens ::= [TOK "^Wissens$"];
@nach ::=
[TOK "^nach$"
POS "^(APPR|PTKVZ)$"
];
@nach_pos ::=
[TOK "^nach$"
POS "^(APPO)$"
];

@prep ::= [POS "^APPR(ART)?$"];
@vfin ::= [POS "^V[VAM]FIN$"];

@em_dat_obj ::=
[TOK "em$"

POS "^(ART|ADJA)$"
MORPH.READING.INFLECTION.case "dat"

];

@er_dat_obj ::=
[TOK "er$"

POS "^(ART|ADJA)$"
MORPH.READING.INFLECTION.case "dat"

];

@noun_fem_dat ::=
[POS "^NN$"

MORPH.READING.INFLECTION [case "dat"
number "singular"
gender "fem"]

];

#RULES

TRIGGER(50) ==
@meines^1 @wissens^2 @nach^3
-> $meines^1, $wissens^2, $nach^3;
TRIGGER(60) ==
@meines^1 @wissens^2 @nach_post^3
-> $meines^1, $wissens^2, $nach^3;

POS_EV(40) == $nach @prep^1;
POS_EV(40) == $nach @vfin^1 ;

NEG_EV(40) == $nach @em_dat_obj^1 ;
NEG_EV(40) ==
$nach @er_dat_obj^1 []* @noun_fem_dat^2
&& cin(^1,"^[PN]P$"^3) && cin(^2,^3);
NEG_EV(10) ==
$nach @er_dat_obj^1 []* @noun_fem_dat^2;

NEG_EV(20) == @vfin^1 [-{@vfin}]* $meines
&& word($nach,^1);

Figure 1: Example of an error checking rule

atomic values in a type definition are interpreted as
regular expression over feature values. The syntax of
these regular expression is similar to the one used in
Perl. In addition, type definitions may also make use
of disjunction and negation over paths.

Currently, the system integrates resources provided

by the probabilistic POS tagger TnT (Brants, 1996),
the morphological analyser MMorph (Petitpierre and
Russell, 1995), and lexicalised chunking information,
contributed by the probabilistic chunk tagger Chunkie
(Skut and Brants, 1998). Of course, further (lexical)
resources can easily be made available to the system,
such as semantic sort hierarchies, or terminological in-
formation.

3.1.2. Regular feature-structure expressions
The specification language distinguishes three ba-

sic types of rules: trigger rules, which characterise the
initial set of error candidates, positive evidence rules,
which serve to map error candidates to confirmed er-
rors, and negative evidence rules, which may elimi-
nate “false alarms”, the latter two collectively known
as “validation rules”. All these rules can be assigned
relative weights, to signal the reliability of a rule de-
pending on the context or the quality of the underlying
information.

Error checking rules consist of a rule header, which
specifies the rule type together with a confidence mea-
sure, a pattern-matching part (LHS), and an action part
(RHS). The LHS of an error rule is a regular expres-
sion over complex linguistic objects. Whenever such a
regular expression is matched, the position of the ob-
jects carrying a coindexation tag (indicated by caret) is
saved. These positions can then be assigned to named
variables on the RHS (indicated by dollar), in order
to make the result of a match available to other rules.
Named variables thus constitute the interface between
trigger and evidence rules.

3.1.3. Constraints
To permit the integration of linguistic resources be-

yond finite state machines, the specification formal-
ism introduces a finite number of relational constraints
which are linked to the pattern matching by means of
coreference tags (indicated by ^). These constraints
thus provide the key mechanism for future enhance-
ments to the expressive power of the formalism.

Currently, the system provides constraints for lex-
ical lookup of complex words (e.g. the word con-
straint in Figure 1), as well as dominance and path
constraints on the tree structure under which a word-
level linguistic object is embedded.

As for tree-structural constraints, the system recog-
nises 3 different types of constraint for every (par-
tial) parser. Among these, the two-place dominance
constraint (e.g. cin) is certainly the most versatile,
because all local tree configurations, like sisterhood,
mother-daughter, aunt-nephew can be derived from it.
This constraint requires the terminal or non-terminal
node specified in the first argument to be dominated

by a node matching the regular expression in the sec-
ond argument. Coindexations not only serve the pur-
pose of linking the structural constraints to the pat-
tern matching, but they can also be used to express
token-identity of phrasal nodes. In the example in
Figure 1, the tokens matching @er_dat_obj and
noun_fem_dat are required to be contained in the
same minimal NP or PP chunk. The cin constraint,
which always binds its second argument to the first
matching node up the tree, is complemented by a
three-place constraint cancestor, determining the
first ancestor of a particular category shared by two
nodes in the tree. This permits the specification of less
local configurations, including c-command. Which
category labels are allowed to hierarchically intervene
between any two phrase structure nodes can be further
restricted by means of a path constraint (e.g. cpath).
All these constraints can of course be negated, thus
offering additional expressive power.

3.1.4. Rule interaction
As we have already stated above, the crucial mech-

anism for rule interaction is provided by means of
error-local variables.

Whenever a sentence is checked for an error, all
trigger rules are applied to it, saving the results of each
successful match, i.e. the locality (and probability) of
an error candidate, as the values of named variables.
For each error candidate, all negative and positive ev-
idence rules will be applied in a subsequent step. If
a negative evidence rule matches, its confidence mea-
sure will be subtracted from the value assigned by the
trigger rule. Similarly, if a positive evidence rule fires,
its confidence measure is added to the confidence mea-
sure of the appropriate trigger rule.

Evidence rules are used to further constrain the
linguistic context of an already identified error can-
didate (or trigger). Although such contexts may, of
course, be specified by means of regular expressions
over word-level linguistic objects, this is certainly not
the only method. As the locality of an error is al-
ready determined by the trigger rule, evidence rules
may consist solely of relational constraints.

The separation of error descriptions into trigger
rules and evidence rules is mainly motivated by three
considerations: efficiency, resource-adaptivity and ro-
bustness. Trigger rules should be formulated in such a
way as to identify an initial set of error candidates with
the minimal amount of linguistic resources. Evidence
rules will then operate on a drastically reduced set of
candidate sentences, allowing for the efficient use of
more expensive machinery, such as partial parsing.
The division of labour between recall-oriented trig-

ger rules and more sophisticated, precision-oriented
evidence rules also maintains a certain degree of re-
source adaptivity and robustness, even if some of the
backend NLP components are non-robust: if some re-
source specified in an evidence rule is not available,
error status can still be determined on the basis of the
trigger rule. Similarly, it is always possible to intro-
duce additional low-confidence evidence rules which
build on less sophisticated, but more robust backend
technology.

3.1.5. An example
Before we proceed to a formal specification of the

error description language, we will briefly discuss the
example of a grammar error. The grammar error de-
scribed by the rules in Figure 1, is a typical, lexically
anchored grammar error of German. Speakers often
use an erroneous variant of the formulaic expressions
meines Wissens `my.GEN knowledge.GEN' or meinem
Wissen nach `my.DAT knowledge.DAT according' by
blending the two grammatical variants into the un-
grammatical *meines Wissens nach `my.GEN knowl-
edge.GEN according'. The complexity of this error de-
rives mainly from the fact that the adposition nach is
highly ambiguous: it can have a dative complement ei-
ther to its left or to its right, and, it can also be a verbal
particle, stranded in sentence-final position. Among
these, only the postpositional use gives rise to ungram-
maticality.

In order to check this error reliably, we will have to
eliminate all those sentences as false alarms, where it
is highly probable that nach does not form a PP con-
stituent with the preceding genitive NP.

The trigger rules identify occurences of meines
Wissens nach as potential error candidates and save the
position of the respective matches in the three error-
local variables. Depending on the POS tag assigned by
the probabilistic tagger, i.e. whether nach is tagged as
a postposition or not, the result of a successful match
is associated with a higher or a lower confidence mea-
sure.

Positive evidence rules specify some of the linguis-
tic contexts where occurrence of nach is most cer-
tainly an error: if it is followed by another preposition,
or the finite verb, it is most likely we are confronted
with the erroneous postpositional use.

The negative evidence rules try to eliminate as false
alarms those cases where either nach is a preposition
with a dative NP to its right, or a stranded verbal par-
ticle. Thus, if such an element exists in a sufficiently
local context, we take it as negative evidence for er-
ror status. As for the identification of datives, not all
forms are equally conclusive: while determiners or

adjectives ending in -em are unambiguous, feminine
singular datives (ending in -er) are actually identical
to genitive singular fenminine and nominative singu-
lar masculine forms. Thus, in these cases, we cannot
check dative case on the basis of the shape of the de-
terminer alone. Thus, it is further required, that there
is a feminine singular dative noun further to the right
and that the determiner or adjective and the head-noun
are part of the same minimal NP or PP (cin). In
case the partial parser does not deliver any (useful)
results, a weakened version of this rule is included,
which does not require locality. Consequently, its con-
fidence measure is considerably low. The last negative
evidence rule addresses the separable particle reading
of nach: if a verb is present in the sentence which may
combine with nach, we also regard this as evidence in
favour of a false alarm. Lexical lookup of combined
forms is performed here by means of a builtin con-
straint (word).

3.2. Formal specification

Grammar checking components are built up by
means of a rule system, a device to describe differ-
ent types of grammar errors and a control engine to
match rules against annotated input. The system is ex-
pressive enough

� to allow the minimum amount of linguistic
knowledge to be identified for a particular type
of error and the minimal processing needed to ac-
quire it (resource adaptivity),

� to describe an error's triggers (including lexical
anchors) and different layers of evidence (posi-
tive or negative),

� to allow constraints specification.

As a result of matching an error description, error can-
didates are signaled out and their locality is reported.

The main components of an error type specification
are the f s-patterns (feature structure patterns) and f s-
regular expressions (feature structure regular expres-
sions). Informally, a f s-pattern is a feature structure
without variables whose features may introduce val-
ues of type string-regular expressions (similar to Perl 5
regular expressions). A f s-regular expression is a reg-
ular expression over f s-patterns enriched with a spe-
cial case of back referencing (Aho, 1990).

Definition 1 (f s-pattern syntax) Let F be a finite set
of feature symbols. A f s-pattern is an expression of
one and only one of the following constructs:

1. a string-regular expression (atomic pattern);

2.
�

f1 π1 � f2 π2 ��������� fn πn � , where fi belong to F
and πi are f s-patterns, 1 � i � n (structural f s-
pattern);

3. π1 � π2 � ... � πn (disjunctive f s-pattern).

A f s-pattern denotes the set of all feature struc-
tures which the pattern approximates, according to the
definition of f s-matching below:

Definition 2 (f s-matching) A f s-pattern π matches a
feature structure ψ, π 	
 ψ if :

1. π is an atomic f s-pattern, ψ is an atomic feature
structure and the exact string pattern matching of
π against ψ is successful;

2. for every f defined in π, f is also defined in ψ
and val � f � π �	
 val � f � ψ �

3. π is a disjunction, π
 π1 � π2 ��������� πm and there
is at least a 1 � j � m such that π j 	
 ψ.

Definition 3 (syntax of a f s-regular expression)
Let N be a finite set of names. A f s-regular
expression E is one of the following constructs:

1. π (f s-pattern);

2. E1 � E2 (concatenation)

3.
�
E1 � E2 � (alternation)

4. � E ��� (Kleene star), � E ��� (positive closure), � E � ?
(optional)

5. � �
E � (negation)

6. π : n (back referencing)

7. n (variable)

where n � N .

The procedural semantics is based on an adaptation
of the Knuth-Morris-Pratt algorithm for exact string
pattern matching (Charras and Lecroq, 1997; Aho,
1990) embedded in a backtracking procedure. The
main difference is that the test for character equal-
ity is replaced by f s-matching. The pattern prepro-
cessing, used for computing the number of positions
the pattern must be shifted to the right, makes use of
strong f s-pattern subsumption, a relation between f s-
patterns defined as follows:

Definition 4 (strong f s-pattern subsumption) A
f s-pattern π subsumes a f s-pattern π � , π � π � if :

1. π is an atomic f s-pattern, π � is an atomic f s-
pattern and they are equal with respect to string
comparison;

2. for every f defined in π, f is also defined is π � and
val � f � π � � val � f � π � � ;

3. π � is a disjunction, π �
 π �1 � π �2 � ����� � π �m and there
is at least a 1 � j � m such that π � π � j.

During processing, a f s-regular expression is
matched against a sequence of feature structures built
on resources provided on demand by distinct NLP
components. Whenever a feature structure in the in-
put sequence is matched with a named f s-pattern and
the name is n, a new variable with name n is created
and the value assigned to it is the feature structure's
position in the sequence. That is, the use of variables
in our system is different from the back referencing
mechanism in Perl with respect to value assignment,
but, as will be shown further, also with respect to the
matching of bound variables, their naming and scope.

An error type description consists of a set of ob-
jects (macros) and a set of rules. A macro is an
atomic f s-pattern enriched with an identifier for f s-
patterns which are often used, offering a useful con-
struct which also makes testing f s-pattern subsump-
tion easier (i.e. reduces it to identifier comparison).

The complete specification of a rule consists of a
f s-pattern, an optional list of constraints and an ac-
tion:

Pattern �Constraints � � Action

where Pattern is a f s-regular expression and
Constraints denotes a conjunction of built-in con-
straints which must be satisfied in order to have the
rule fire. The arguments of a constraint are restricted
to variables bound during the matching of Pattern.
The Action part is used to save bound variables in a
book-keeping structure for further processing.

An error type may have two types of rules: trig-
ger (or lexical anchor) rules and evidence (or context)
rules. The trigger rules define the first layer for “candi-
dacy” checking, that is, if they fire, they set the locality
of a hypothesis. The evidence rules check for special
conditions over a hypothesis' context and they can be
of two types: positive evidence or negative evidence,
i.e. they collect information used to respectively con-
firm or refute, with some degree of confidence, that a
candidate is an error.

The control engine proceeds as follows: if at least
one of the trigger rules belonging to a description is
matched with success, all the context rules are applied.
The only means to collect and to transmit information
among rules belonging to the same error description,

as well as to save the matching results for the decision
module, is variable binding.

To ensure that the use of variables inside of an error
type description is well-defined, the following restric-
tions must be fulfilled:

� a back reference may occur only at the upper
level of a f s-regular expression, i.e. no subex-
pression of type closure, alternation or negation
is allowed to contain a back reference.

� a rule whose pattern contains a back reference
may contain later occurrences of variable's name
only as arguments to constraints or in the action
side.

� the set of variables saved by the trigger rules must
be the same for all the triggers belonging to the
same error type description.

� for an error description type, any variable occur-
rence inside the left hand side of an evidence rule,
must belong to the set of variables saved by the
trigger rules.

Thus, in addition to the efficient implementation
of error checking components, the rule formalism just
described supports the grammar writer already in the
process of development.

4. Future work

Whilst the implementation of this formalism and
its integration in language checking demonstrators has
proved that the basic concept is sound, there remain
some open questions which are still under investiga-
tion.

Firstly, the information available to the error
checking component is rather shallow. In principle,
however, the error formalism can make use of the re-
sults of any depth of processing. We therefore intend
to experiment with integrating focussed deep process-
ing of sections of the input, to assess whether this
provides any significant benefit in relation to the ad-
ditional cost in time which it will entail.

Furthermore, we intend to implement some rule
systems which are of realistic size for practical appli-
cations. This means, for controlled language appli-
cations, describing some 40-50 phenomena, and for
grammar checking some two hundred would be ap-
propriate. It remains to be seen if the approach out-
lined here behaves well with rule sets of this size - it
will be particularly interesting to see to what extent
the rules can usefully interact (e.g. share information)
and where this interaction may have negative effects.

5. Conclusion
We have argued that the traditional approach to lan-

guage checking is best seen, not in terms of error re-
covery for some parsing system, but rather should fo-
cus on real errors. The system described here sepa-
rates the NLP resources, which provide robust and ar-
bitrarily rich descriptions of input text, and the check-
ing components which use this information in an op-
timal, focussed fashion, to identify errors. The system
has been proved to work well using relatively shallow
processing technologies and with small numbers of er-
ror types, it remains to be investigated to what extent
“deep processing” has a role to play in this model, and
how well the approach holds up when a full error ty-
pology is implemented.

6. References
Aho, Alfred V., 1990. Algorithms for finding patterns

in strings. In Jan van Leeuwen (ed.), Handbook of
Theoretical Computer Science, volume A. Elsevier
Science Publishers.

Brants, Thorsten, 1996. TnT – a statistical part-of-
speech tagger. Technical report, Universität des
Saarlandes, Computational Linguistics.

Braun, Christian, 1999. Flaches und robustes Parsen
deutscher Satzgefüge. Master's thesis, Computa-
tional Linguistics, University of the Saarland.

Bredenkamp, Andrew, Berthold Crysmann, and Judith
Klein, 1999. Annotation of German news corpus.
In Anne Abeillé (ed.), ATALA workshop: Corpus
annotés pour la syntaxe/Treebanks. Université Paris
7.

Carbonell, J. G. and P. J. Hayes, 1983. Recovery
strategies for parsing extragrammatical language.
American Journal of Computational Linguistics,
9(3–4):123–146.

Carbonell, J. G. and P. J. Hayes, 1984. Coping with
extragrammaticality. In Proceedings of COLING
84. Stanford.

Carl, Michael and Antje Schmidt-Wigger, 1998. Shal-
low post morphological processing with KURD. In
Proceedings of NeMLaP. Sydney.

Charras, Christian and Thierry Lecroq, 1997. Ex-
act string matching algorithms. Technical report,
Laboratoire d'Informatique de Rouen, Université de
Rouen.

K. Jensen et al., 1983. Parse fitting and prose fixing:
Getting a hold on illformedness. American Journal
of Computational Linguistics, 9(3-4):161–177.

Karttunen, Lauri, Jean-Pierre Chanod, Gregory
Grefenstette, and Anne Schiller, 1996. Regular ex-
pressions for language engineering. Natural Lan-
guage Engineering, 2(4):305–328.

Neumann, Günter, Ralf Backofen, Judith Baur,
Markus Becker, and Christian Braun, 1997. An in-
formation extraction core system for real world ger-
man text processing. In Proceedings of the 5th Con-
ference on Applied Natural Language Processing
(ANLP).

Petitpierre, Dominique and Graham Russell, 1995.
MMorph — The MULTEXT Morphology Program.
ISSCO, Geneva.

Skut, Wojciech and Thorsten Brants, 1998. Chunk
tagger – statistical recognition of noun phrases. In
Proceedings of the ESSLLI Workshop on Automated
Acquisition of Syntax and Parsing. Saarbrücken,
Germany.

Thurmair, G., 1990. Parsing for grammar and style
checking. In Proceedings of COLING-90. Helsinki.

